skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bayram, S Burcin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an inexpensive sodium molecular spectroscopy experiment for use in an advanced undergraduate laboratory course in physics or chemistry. The molecules were excited predominantly from the ground X1Σg+(v″ = 15) state to the B1Πu(v′ = 6) state using a commercially available 532-nm broadband diode laser. The laser-induced molecular fluorescence was measured using a miniature fiber-coupled spectrometer at a resolution of 0.5 nm. The spectral peak assignments were done by comparing the observed spectrum with the calculated Franck–Condon values. Important molecular constants such as fundamental frequency, anharmonicity, bond strength, and dissociation energy of the ground electronic state were determined by using the Birge–Sponer extrapolation method. The presence of highly visible blue glowing molecules along the green laser beam creates an engaging laboratory experience. Emphasis is placed on students developing their understanding of the molecular structure, practicing molecular spectroscopic techniques, and applying knowledge of light–matter interactions to a physical system. 
    more » « less